An Efficient and Accurate Method to Solve Low Frequency and Non-Conformal Problems Using Finite Difference Time Domain (FDTD)

نویسندگان

  • Kadappan Panayappan
  • Raj Mittra
چکیده

In this article we present νFDTD (New FDTD), an efficient and accurate method for solving low frequency problems and with those non-conformal geometries by using the Finite Difference Time Domain (FDTD) method. The conventional time domain technique FDTD demands extensive computational resources when solving low frequency problems, or when dealing with dispersive media. The νFDTD technique is a new general-purpose field solver, which is designed to tackle the above mentioned issues using some novel approaches, which deviate significantly from the legacy methods that only rely on minor modifications of the FDTD update algorithm. The νFDTD solver is a hybridized version of the conformal FDTD (CFDTD), and a novel frequency domain technique called the Dipole Moment (DM) approach. This blend of time domain and frequency domain techniques empowers the solver with potential to solve problems that involve: (i) calculating low frequency response accurately and numerically efficiently; (ii) handling non-Cartesian geometries such as curved surfaces accurately without staircasing; (iii) handling thin structures, with or without finite losses; and (iv) dealing with multi-scale geometries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study of Electromagnetic Radiation from Monopole Antennas on Spherical-Lossy Earth Using the Finite-Difference Time-Domain Method

Radiation from monopole antennas on spherical-lossy earth is analyzed by the finitedifference time-domain (FDTD) method in spherical coordinates. A novel generalized perfectly matched layer (PML) has been developed for the truncation of the lossy soil. For having an accurate modeling with less memory requirements, an efficient "non-uniform" mesh generation scheme is used. Also in each time step...

متن کامل

An efficient finite difference time domain algorithm for band structure calculations of Phononic crystal

In this paper, a new algorithm for studying elastic wave propagation in the phononic crystals is presented. At first, the displacement-based forms of elastic wave equations are derived and then the forms are discretized using finite difference method. So the new algorithm is called the displacement-based finite difference time domain (DBFDTD). Three numerical examples are computed with this met...

متن کامل

FDTD Analysis of Top-Hat Monopole Antennas Loaded with Radially Layered Dielectric

Top-hat monopole antennas loaded with radially layered dielectric are analyzed using the finite-difference time-domain (FDTD) method. Unlike the mode-matching method (MMM) (which was previously used for analyzing these antennas) the FDTD method enables us to study such structures accurately and easily. Using this method, results can be obtained in a wide frequency band by performing only one ti...

متن کامل

On the Solution of a Class of Large Body Problems with Full or Partial Circular Symmetry by Using the Finite-Difference Time-Domain (FDTD) Method

This paper presents an efficient method to accurately solve large body scattering problems with partial circular sym­ metry. The method effectively reduces the computational domain from three to two dimensions by using the reciprocity theorem. It does so by dividing the problem into two parts: a larger 3-D region with circular symmetry, and a smaller 2-D region without circular symmetry. An fin...

متن کامل

Efficient Finite-Difference Time-Domain Modeling of Periodic Structures under Non-Periodic Sources

The paper proposes an efficient method to analyze the response of periodic structures to non-periodic excitations in the time domain, employing the Finite-Difference Time-Domain (FDTD) method. To that end, the array-scanning method, which has been previously associated with frequency-domain, integral formulations of periodic structure problems, is translated into the context of FDTD. Hence, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015